LECTURE 30 INDETERMINATE FORMS AND L’HOPITAL’S RULE

Example. We check the following limits.
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Example. One may be tempted to applied L’Hopital’s Rule everywhere without checking the hypothesis.
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where at the last inequality, you want to apply L’Hopital’s Rule again but notice that sin (0) = 0 but the

denominator yields 1 by directly plugging in.

Remark. L’Hopital’s Rule applies to one-sided limits as well.

We are not going to fully justify how L’Ho6pital’s Rule will apply also to indeterminate forms other than
«0»
6 .

Example. Find the limits of these “52” forms:
. sec(z)
(1) hmf_)% 1+tan(z) "
Note that the numerator and the denominator are discontinuous at x = 5. We then must check
one-sided limits.
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(2) limg— oo oG = limg o0 Y limg 0 == 0. This implies that logarithmic growth is
slower than z2 (in fact, slower than z® for any a > 0).
(3) limy 00 & 7= limg 00 - = lim; o, 5 = oo. This implies that exponential growth is

faster than x? (in fact, faster than x¢ for any a > 0).

Example. Find the limits of these co - 0 forms:
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) =" limy 0 2 — 1. The last step is either by L’Hopital’s Rule or the limit
identity you remembered (proved by the squeeze theorem).
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indeterminante form is “0 - (—o0)”, but we transformed it into a . This limit implies that even
though In () — —oo as & — 0, multiplying by a growth term such as /x will steer it back to 0,
instead of diving down. In fact, lim,_,o+ 2*In (z) = 0 for any a > 0.
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Example. Find the limit of this co — co form:
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Example. Logarithmic tricks: if lim,_,, In (f (z)) = L, then

lim f (z) = lim et /(@) — (limeoln f(2)) — oL
T—a z—0
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With this, we can prove that lim,_,q+ (1 + x)% = e. Now, consider the function f (z) = (14 a:)% and we
want lim,_,o+ f (x). By the logarithmic trick, we simply need

. _ In(1+42) =0 UH
A ) = g = A1
Therefore, by the trick,
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Example. Similar example. Fiundlim,_, x7. We use the trick again. Let f(z) = z:
find lim, o0 In (f (2)).

. We just need to
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Therefore,
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Now, armed with another way to evaluate limits (under some specific conditions), we are now able to deal
with a bit more complicated problems.

Example. Find a value of ¢ that makes the function

9z —3sin(3z)
c, z=0
continuous at x = 0. Explain why your value of ¢ works.
We want the left and right limit approaching = 0 to be equal to the function value f (0) = ¢, that is,
we want
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It suffices to evaluate both limits.
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The right limit is similar. We then arrive at ¢ = 75.



