
LECTURE 30 INDETERMINATE FORMS AND L'HÔPITAL'S RULE

Example. We check the following limits.

(1) limx→0
3x−sin x

x

“ 0
0 ”, L'H= limx→0

3−cos(x)
1 = 2.

(2) limx→0

√
1+x−1− x2

x2

“ 0
0 ”, L'H= limx→0

1
2 (1+x)

− 1
2− 1

2

2x

“ 0
0 ”, L'H= limx→0

− 1
4 (1+x)

− 3
2

2 = − 1
8 .

Example. One may be tempted to applied L'Hôpital's Rule everywhere without checking the hypothesis.

lim
x→0

1− cos (x)

x+ x2

“ 0
0 ”, L'H= lim

x→0

sin (x)

1 + x
= 0

where at the last inequality, you want to apply L'Hôpital's Rule again but notice that sin (0) = 0 but the
denominator yields 1 by directly plugging in.

Remark. L'Hôpital's Rule applies to one-sided limits as well.

We are not going to fully justify how L'Hôpital's Rule will apply also to indeterminate forms other than
“ 0
0”.

Example. Find the limits of these “∞∞” forms:

(1) limx→π
2

sec(x)
1+tan(x) .

Note that the numerator and the denominator are discontinuous at x = π
2 . We then must check

one-sided limits.

lim
x→π

2
−

sec (x)

1 + tan (x)

“∞∞ ”, L'H
= lim

x→π
2
−

sec (x) tan (x)

sec2 (x)
= lim
x→π

2
−
sin (x) = 1,

and

lim
x→π

2
+

sec (x)

1 + tan (x)

“−∞−∞ ”, L'H
= lim

x→π
2

+

sec (x) tan (x)

sec2 (x)
= lim
x→π

2
+
sin (x) = 1.

(2) limx→∞
ln x
2
√
x

“∞∞ ”, L'H
= limx→∞

1/x
1/
√
x

= limx→∞
1√
x

= 0. This implies that logarithmic growth is

slower than x
1
2 (in fact, slower than xa for any a > 0).

(3) limx→∞
ex

x2

“∞∞ ”, L'H
= limx→∞

ex

2x

“∞∞ ”, L'H
= limx→∞

ex

2 = ∞. This implies that exponential growth is

faster than x2 (in fact, faster than xa for any a > 0).

Example. Find the limits of these ∞ · 0 forms:

(1) limx→∞ x sin
(
1
x

) y= 1
x= limy→0+

sin(y)
y = 1. The last step is either by L'Hôpital's Rule or the limit

identity you remembered (proved by the squeeze theorem).

(2) limx→0+
√
x ln (x) = limx→0+

ln(x)
1/
√
x

“ 0
0 ”, L'H= limx→0+ − 1/x

1/2x
3
2
= limx→0+ −2

√
x = 0. Note the initial

indeterminante form is “0 · (−∞) ”, but we transformed it into a “ 0
0”. This limit implies that even

though ln (x) → −∞ as x → 0, multiplying by a growth term such as
√
x will steer it back to 0,

instead of diving down. In fact, limx→0+ xa ln (x) = 0 for any a > 0.

Example. Find the limit of this ∞−∞ form:

lim
x→0

1

sin (x)
− 1

x
= lim
x→0

x− sin (x)

x sin (x)

“ 0
0 ”, L'H= lim

x→0

1− cos (x)

sin (x) + x cos (x)

“ 0
0 ”, L'H= lim

x→0

− sin (x)

2 cos (x) + x cos (x)
=

0

2
= 0.

Example. Logarithmic tricks: if limx→a ln (f (x)) = L, then

lim
x→a

f (x) = lim
x→0

eln f(x) = e(limx→0 ln f(x)) = eL.

1
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With this, we can prove that limx→0+ (1 + x)
1
x = e. Now, consider the function f (x) = (1 + x)

1
x and we

want limx→0+ f (x). By the logarithmic trick, we simply need

lim
x→0+

ln (f (x)) = lim
x→0+

ln (1 + x)

x

“∞∞ ”, L'H
= lim

x→0+

1
1+x

1
= 1.

Therefore, by the trick,

lim
x→0+

f (x) = lim
x→0+

eln f(x) = e(limx→0+ ln f(x)) = e.

Example. Similar example. Fiundlimx→∞ x
1
x . We use the trick again. Let f (x) = x

1
x . We just need to

�nd limx→∞ ln (f (x)).

lim
x→∞

ln (f (x)) = lim
x→∞

lnx

x

“∞∞ ”, L'H
= lim

x→∞

1/x

1
= 0.

Therefore,
lim
x→∞

f (x) = lim
x→∞

eln f(x) = e(limx→∞ ln f(x)) = e0 = 1.

Now, armed with another way to evaluate limits (under some speci�c conditions), we are now able to deal
with a bit more complicated problems.

Example. Find a value of c that makes the function

f (x) =

{
9x−3 sin(3x)

5x3 , x 6= 0

c, x = 0

continuous at x = 0. Explain why your value of c works.
We want the left and right limit approaching x = 0 to be equal to the function value f (0) = c, that is,

we want

lim
x→0−

9x− 3 sin (3x)

5x3
= c,

and

lim
x→0+

9x− 3 sin (3x)

5x3
= c.

It su�ces to evaluate both limits.

lim
x→0−

9x− 3 sin (3x)

5x3

“ 0
0 ”, L'H= lim

x→0−

9− 9 cos (3x)

15x2

“ 0
0 ”, L'H= lim

x→0−

27 sin (3x)

30x

“ 0
0 ”, L'H=

27

30
lim
x→0−

3 cos (3x)

1
=

27

10
.

The right limit is similar. We then arrive at c = 27
10 .


