LECTURE 30 INDETERMINATE FORMS AND L'HÔPITAL'S RULE

Example. We check the following limits.

(1)
$$\lim_{x \to 0} \frac{3x - \sin x}{x} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0} \frac{3 - \cos(x)}{1} = 2.$$

(2)
$$\lim_{x \to 0} \frac{\sqrt{1 + x} - 1 - \frac{x}{2}}{x^2} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0} \frac{\frac{1}{2}(1 + x)^{-\frac{1}{2}} - \frac{1}{2}}{2x} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0} \frac{-\frac{1}{4}(1 + x)^{-\frac{3}{2}}}{2} = -\frac{1}{8}.$$

Example. One may be tempted to applied L'Hôpital's Rule everywhere without checking the hypothesis.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x + x^2} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0} \frac{\sin(x)}{1 + x} = 0$$

where at the last inequality, you want to apply L'Hôpital's Rule again but notice that $\sin(0) = 0$ but the denominator yields 1 by directly plugging in.

Remark. L'Hôpital's Rule applies to one-sided limits as well.

We are not going to fully justify how L'Hôpital's Rule will apply also to indeterminate forms other than $"\frac{0}{0}".$

Example. Find the limits of these " $\frac{\infty}{\infty}$ " forms:

(1) $\lim_{x \to \frac{\pi}{2}} \frac{\sec(x)}{1 + \tan(x)}$.

Note that the numerator and the denominator are discontinuous at $x = \frac{\pi}{2}$. We then must check one-sided limits.

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{\sec(x)}{1 + \tan(x)} \stackrel{\text{"$\frac{\infty}{\infty}$", L'H}}{=} \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sec(x)\tan(x)}{\sec^2(x)} = \lim_{x \to \frac{\pi}{2}^{-}} \sin(x) = 1,$$

and

$$\lim_{x \to \frac{\pi}{2}^+} \frac{\sec(x)}{1 + \tan(x)} \stackrel{\text{``-```, L'H}}{=} \lim_{x \to \frac{\pi}{2}^+} \frac{\sec(x)\tan(x)}{\sec^2(x)} = \lim_{x \to \frac{\pi}{2}^+} \sin(x) = 1.$$

- slower than $x^{\frac{1}{2}}$ (in fact, slower than x^a for **any** a > 0). (3) $\lim_{x\to\infty} \frac{e^x}{x^2} \stackrel{\text{(max)}}{=} \lim_{x\to\infty} \frac{e^x}{2x} \stackrel{\text{(max)}}{=} \lim_{x\to\infty} \frac{e^x}{2} = \infty$. This implies that exponential growth is faster than x^2 (in fact, faster than x^a for **any** a > 0).

Example. Find the limits of these $\infty \cdot 0$ forms:

- (1) lim_{x→∞} x sin (¹/_x) ^{y=1/x} lim_{y→0+} sin(y)/y = 1. The last step is either by L'Hôpital's Rule or the limit identity you remembered (proved by the squeeze theorem).
 (2) lim_{x→0+} √x ln (x) = lim_{x→0+} lin(x)/(1/√x) = lim_{x→0+} 1/x/(1/2x³/2) = lim_{x→0+} 2√x = 0. Note the initial limit implies that even indeterminante form is " $0 \cdot (-\infty)$ ", but we transformed it into a " $\frac{0}{0}$ ". This limit implies that even though $\ln(x) \to -\infty$ as $x \to 0$, multiplying by a growth term such as \sqrt{x} will steer it back to 0, instead of diving down. In fact, $\lim_{x\to 0^+} x^a \ln(x) = 0$ for **any** a > 0.

Example. Find the limit of this $\infty - \infty$ form:

$$\lim_{x \to 0} \frac{1}{\sin(x)} - \frac{1}{x} = \lim_{x \to 0} \frac{x - \sin(x)}{x \sin(x)} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x) + x \cos(x)} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0} \frac{-\sin(x)}{2\cos(x) + x\cos(x)} = \frac{0}{2} = 0.$$

Example. Logarithmic tricks: if $\lim_{x\to a} \ln(f(x)) = L$, then

$$\lim_{x \to a} f(x) = \lim_{x \to 0} e^{\ln f(x)} = e^{(\lim_{x \to 0} \ln f(x))} = e^{L}$$

With this, we can prove that $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}} = e$. Now, consider the function $f(x) = (1+x)^{\frac{1}{x}}$ and we want $\lim_{x\to 0^+} f(x)$. By the logarithmic trick, we simply need

$$\lim_{x \to 0^+} \ln \left(f\left(x \right) \right) = \lim_{x \to 0^+} \frac{\ln \left(1 + x \right)}{x} \stackrel{\text{"$\stackrel{\infty}{=}$"$, L'H}}{=} \lim_{x \to 0^+} \frac{\frac{1}{1 + x}}{1} = 1.$$

Therefore, by the trick,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{\ln f(x)} = e^{\left(\lim_{x \to 0^+} \ln f(x)\right)} = e.$$

Example. Similar example. Fiundlim_{$x\to\infty$} $x^{\frac{1}{x}}$. We use the trick again. Let $f(x) = x^{\frac{1}{x}}$. We just need to find $\lim_{x\to\infty} \ln(f(x))$.

$$\lim_{x \to \infty} \ln\left(f\left(x\right)\right) = \lim_{x \to \infty} \frac{\ln x}{x} \stackrel{\text{"$\frac{\infty}{2}$", L'H}}{=} \lim_{x \to \infty} \frac{1/x}{1} = 0.$$

Therefore,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{\ln f(x)} = e^{(\lim_{x \to \infty} \ln f(x))} = e^0 = 1.$$

Now, armed with another way to evaluate limits (under some specific conditions), we are now able to deal with a bit more complicated problems.

Example. Find a value of c that makes the function

$$f(x) = \begin{cases} \frac{9x - 3\sin(3x)}{5x^3}, & x \neq 0\\ c, & x = 0 \end{cases}$$

continuous at x = 0. Explain why your value of c works.

We want the left and right limit approaching x = 0 to be equal to the function value f(0) = c, that is, we want

$$\lim_{x \to 0^-} \frac{9x - 3\sin(3x)}{5x^3} = c,$$

and

$$\lim_{x \to 0^+} \frac{9x - 3\sin{(3x)}}{5x^3} = c.$$

It suffices to evaluate both limits.

$$\lim_{x \to 0^{-}} \frac{9x - 3\sin(3x)}{5x^3} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0^{-}} \frac{9 - 9\cos(3x)}{15x^2} \stackrel{\text{"0", L'H}}{=} \lim_{x \to 0^{-}} \frac{27\sin(3x)}{30x} \stackrel{\text{"0", L'H}}{=} \frac{27}{30} \lim_{x \to 0^{-}} \frac{3\cos(3x)}{1} = \frac{27}{10}$$

The right limit is similar. We then arrive at $c = \frac{27}{10}$.